欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

基于缓存与深度强化学习的星间激光链路动态路由算法*

陈志豪, 田丰, 王文倩, 赵艳春, 沈崛, 胡海鹰   

  1. 中国科学院微小卫星创新研究院,上海 201304;
    中国科学院大学,北京 100049
  • 收稿日期:2025-06-06 修回日期:2025-11-06 发布日期:2025-11-26
  • 通讯作者: E-mail: tianf@microsate.com
  • 基金资助:
    *国家自然科学基金(62341105); 中国科学院青年创新促进会(2021291)和启明星(24QA2708800)资助

Dynamic routing algorithm for laser inter-satellite links based on caching and deep reinforcement learning

CHEN Zhihao, TIAN Feng, WANG Wenqian, ZHAO Yanchun, SHEN Jue, HU haiying   

  1. Innovation Academy for Microsatellites, Chinese Academy of Sciences, Shanghai 201304, China;
    University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-06-06 Revised:2025-11-06 Published:2025-11-26

摘要: 激光星间链路是低地球轨道卫星网络中实现高速率、高带宽、低功耗的有效方法,目前已经有很多针对激光星间链路的路由算法,但是大多数算法都假设激光星间链路是稳定的,没有考虑到因激光星间链路抖动而引起的丢包。本文提出了一种基于缓存与深度强化学习相结合的星间激光链路动态路由算法。该算法融合了分布式多智能体深度强化学习框架与双倍速率同步动态随机存储器缓存机制,通过计算主备路径并结合缓存重传显著降低了链路中断时的丢包率、时延以及实现了负载均衡。仿真结果表明,在简单场景下,我们提出的路由算法表现很好,在复杂场景下相较于传统深度Q网络和最短路径算法,其在丢包率、平均时延及负载均衡方面分别提升了15.14%、7.95%和58.25%,且表现与简单场景基本一致,有效增强了激光星间链路下低轨星座网络的鲁棒性。

关键词: 激光星间链路, 低地球轨道卫星网络, 深度强化学习, 缓存机制

Abstract: Laser inter-satellite link (LISL) is an effective method to achieve high speed, high bandwidth, and low power consumption in low Earth orbit (LEO) satellite networks, and there are many routing algorithms for LISL, but most of the algorithms assume that the LISL is stable, and do not take into account the packet loss due to the LISL jitter. In this paper, we propose a Caching Based Dynamic Routing algorithm (CBDR) for interstellar laser links based on the combination of caching and deep reinforcement learning (DRL). The algorithm integrates a distributed multi-intelligence deep reinforcement learning framework with a double-rate synchronous dynamic random memory (DDR) caching mechanism, which significantly reduces the packet loss rate and delay during link interruption and achieves load balancing by calculating the primary and backup paths and combining with cache retransmission. Simulation results show that CBDR performs well in simple scenarios. Compared with traditional deep Q learning and shortest path algorithms, CBDR improves packet loss rate, average delay, and load balancing by 15.14%, 7.95%, and 58.25%, respectively, in complex scenarios, and its performance is basically consistent with that in simple scenarios, effectively enhancing the robustness of LEO constellation networks under LISL.

Key words: laser inter-satellite link, LEO satellite networks, deep reinforcement learning, caching

中图分类号: